Relative contribution of chloride channels and transporters to regulatory volume decrease in human glioma cells
نویسندگان
چکیده
منابع مشابه
Amiloride-sensitive Na+ channels contribute to regulatory volume increases in human glioma cells.
Despite intensive research, brain tumors remain among the most difficult type of malignancies to treat, due largely to their diffusely invasive nature and the associated difficulty of adequate surgical resection. To migrate through the brain parenchyma and to proliferate, glioma cells must be capable of significant changes in shape and volume. We have previously reported that glioma cells expre...
متن کاملExpression of voltage-gated chloride channels in human glioma cells.
Voltage-gated chloride channels have recently been implicated as being important for cell proliferation and invasive cell migration of primary brain tumors cells. In the present study we provide several lines of evidence that glioma Cl- currents are primarily mediated by ClC-2 and ClC-3, two genes that belong to the ClC superfamily. Transcripts for ClC-2 thru ClC-7 were detected in a human glio...
متن کاملContribution of chloride channels to volume regulation of cortical astrocytes.
The objective of this study was to determine the relative contribution of Cl(-) channels to volume regulation of cultured rat cortical astrocytes after hypotonic cell swelling. Using a Coulter counter, we showed that cortical astrocytes regulate their cell volume by approximately 60% within 45 min after hypotonic challenge. This volume regulation was supported when Cl(-) was replaced with Br(-)...
متن کاملIK channels are involved in the regulatory volume decrease in human epithelial cells.
Parallel activation of Ca(2+)-dependent K(+) channels and volume-sensitive Cl(-) channels is known to be responsible for KCl efflux during regulatory volume decrease (RVD) in human epithelial Intestine 407 cells. The present study was performed to identify the K(+) channel type. RT-PCR demonstrated mRNA expression of Ca(2+)-activated, intermediate conductance K(+) (IK), but not small conductanc...
متن کاملRegulatory volume decrease in human esophageal epithelial cells.
In vivo human esophageal epithelial cells are regularly exposed to hyposmolal stress. This stress, however, only becomes destructive when the surface epithelial cell (barrier) layers are breached and there is contact of the hyposmolal solution with the basolateral cell membranes. The present investigation was designed to examine the effects of hyposmolal stress in the latter circumstance using ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Physiology-Cell Physiology
سال: 2005
ISSN: 0363-6143,1522-1563
DOI: 10.1152/ajpcell.00503.2004